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Abstract

We introduce a decision-focused scenario generation framework for contextual
two-stage stochastic linear programs that bypasses explicit conditional distribution
modeling. A neural generator maps a context x to a fixed-size set of scenarios
{€¢,(z)}3_,. For each generated collection we compute a first-stage decision by
solving a single log-barrier regularized deterministic equivalent whose KKT system
yields closed-form, efficiently computable derivatives via implicit differentiation.
The network is trained end-to-end to minimize the true (unregularized) downstream
cost evaluated on observed data, avoiding auxiliary value-function surrogates,
bi-level heuristics, or differentiation through generic LP solvers. Unlike single-
scenario methods, our approach natively learns multi-scenario representations;
unlike distribution-learning pipelines, it scales without requiring density estimation
in high dimension. We detail the barrier formulation, the analytic gradient structure
with respect to second-stage data, and the resulting computational trade-offs.

Preliminary experiments on contextual synthetic instances illustrate that the method
can rival current state-of-the-art methods, even when trained on small amounts of
training data.

Keywords: contextual stochastic programming; decision-focused learning; differentiable optimiza-
tion; log-barrier methods; scenario generation.

1 Introduction

Contextual stochastic programming studies decision problems under uncertainty when the distribution
of the uncertain parameters depends on an observed context . This setting has received considerable
attention in the literature in recent years, as evidenced by the survey paper by|Sadana et al.|[2024], and
is common in applications such as energy systems, supply chains, and finance, where forecasts and
exogenous signals materially affect optimal decisions. Practitioners typically face limited historical
data and high-dimensional uncertainties, which makes accurate estimation of conditional distributions
a challenging and often unnecessary task if the ultimate goal is to make good decisions.

The standard “predict-then-optimize” pipeline (see e.g., (Bertsimas and Kallus|[2020], Deng and Sen
[2022]], Kannan et al.| [2025]], Tian et al.|[2024]])) first estimates the conditional law £(|2) and then
solves the induced stochastic program. Although conceptually clean, this two-stage approach does not
take advantage of the structure of the underlying optimization problem. Decision-focused learning
offers an alternative by training predictive models end-to-end with respect to downstream decision
quality rather than likelihood or moment matching. Some recent works have explored this avenue; we
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refer toMandi et al.| [2024] for a comprehensive review of such methods. The vast majority of those
works, however, aim at developing pointwise forecasts. In some cases this is enough—for instance,
Homem-de Mello et al.|[2024] show that, for a certain class of two-stage stochastic programs, a single
scenario suffices to obtain an optimal decision. and discuss a method to learn a single-scenario map.

In general, however, it is well known from the stochastic programming literature that one really needs
a collection of scenarios in order to properly solve a stochastic program (see, e.g., Wallace| [2000]).
The task of learning a deterministic map from contexts to a finite collection of scenarios constitutes a
much harder problem. Some works in that direction include [Islip et al.|[2025]], who rely on neural
surrogates to estimate recourse functions, and |Grigas et al.[[2021]], who fix the set of scenarios and
determine the probability of each scenario in a decision-focused fashion.

In this paper we propose a decision-focused scenario generation framework for contextual two-
stage stochastic linear programs. A neural generator maps a context x to a fixed-size collection of
representative scenarios. For each generated collection we compute a first-stage decision by solving a
log-barrier regularized deterministic equivalent. By writing and differentiating the KKT optimality
conditions of this smooth surrogate, we obtain closed-form expressions for all required gradients via
implicit differentiation. This avoids (i) fitting high-dimensional conditional densities, (ii) training
separate recourse-value surrogates, and (iii) differentiating through general-purpose LP solvers.

Our main contributions are:
* A principled decision-focused pipeline that trains a neural scenario generator end-to-end to
minimize true downstream cost for contextual two-stage stochastic linear programs.

* A smooth log-barrier surrogate whose KKT system admits analytic implicit derivatives
with respect to generated second-stage data, enabling efficient backpropagation without
black-box solver differentiation.

* Preliminary empirical evidence on synthetic contextual instances showing that the method
can match or outperform benchmarks while using substantially fewer scenarios.

2 Methodological approach

Let (€2, F,P) be a probability space, and (z,¢) a random vector on R? x R¥. We denote by L£(¢ | )
the conditional distribution of £ given z.

2.1 Problem setting

We study a contextual two-stage stochastic program of the form

min ¢’z 4 Q(z,x), Z ={z€R™: Az = b}, (1

2€Z,220

where A € R™1*™1 p € R™, ¢ € R™. The second stage cost function Q(z, x) is defined as:

Qzw) = Ege | min q(§) 'u st W(Qu=h(&) =T(©)z |, ©)

here v € R"2, W (§) € R™2*"2 T(£) € R™2*™  h(£) € R™2, and ¢(§) € R™2. We assume that
we have relatively complete recourse, i.e., the second-stage problem is feasible for all z € Z and all
¢ e R*. We also make the standard assumption that A is full row-rank, and that the same holds for
W () and T'(§) almost surely.

2.2 Learning a mapping from contexts to scenarios

Our aim is to learn a mapping ¢, : = +—> {és (z)}5_,, parametrized by w, that outputs a fixed-size
collection of equally-likely representative scenarios for each context variable x. For a given ¢, (),
its associated first-stage decision is obtained by solving a scenario-based, log-barrier regularized
surrogate problem. More precisely we define

s
zn (7, w) > arg rzrg? {cTz — ,uZlog(zi) + % Z Q#(z, [¢w($)]s)} ; 3)
3 s=1
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where Q,, : (2,&) > minyernz {q(€) Tu—pu >, log(u) | W(€)u = h(€)—T(£)z} is the log-barrier
regularized recourse function.

Given training data consisting of a collection of scenario-observation pairs {(z;, ;) }Y,, we define
the training loss as the average (non-regularized) cost of decisions z(z;) on the observed scenarios

“w
&
1S
Ry(w) := NZG(ZM(%,IU%&), “
i=1

where G(z,€) := ¢z + Qq(z, €) is the non-regularized objective function for a fixed scenario &.

3 Explicit expression for sensitivities

The map ¢,, is typically implemented as a neural network with weight w that are optimized through
some variant of stochastic gradient descent. To this end, we need to compute the gradient of the loss
R,,(w) with respect to w. Chain rules yields

Vi Ry(w) = g: Ozl w))e) V.G(2) 5)
Wit =N . - ow; g TS 2=z (ziw)

1= =1,...,n.

To obtain an expression for V,G(z, &), we first note that evaluating the recourse function Q(z, £) is
equivalent to solving the second stage linear program. Thus, Danskin’s theorem provide subgradients
of the recourse cost in terms of its optimal dual variables \*(¢) as 0.Qo(z, &) > —T(€) TA*(£). We
hence obtain the desired gradient as

V.G(2,&) = c—T(&) A (&). (6)

To compute the first term inside the sum in (5), we leverage the implicit function theorem applied to
the KKT conditions of the barrier-regularized surrogate problem. The surrogate problem associated
with scenario collection ¢, (z;) = {¢& k}le and regularization parameter y is a log-barrier regularized
linear program in canonical form, as follows:

s AT . s iz _ 7
rzn>161 ¢'z ;uz log?; st. AZ =0 @)
where 2 = (z,u1,...,us), ¢ = (¢, 5q1,---,%4s) b o= (b, h1,... hs), o =
(,u, %u,...,%u),and
A 0 --- 0
. W, T, --- 0
| S : ®)
Ws 0 - Ts

The KKT condition for optimality for optimality for problem 7| with respect to a decision 2 is that
there should exist a dual variable A € R such that the pair Y = (2, \) satisfies

o ATy T s—1
F(y;Abe) = |©7 A4 A DRsl = g ©)
Az -0
where Diag(u) denotes a matrix with (u, ..., u) in the diagonal and 0 otherwise, and 271 :=
(1/21,...,1/2,) 7. The Jacobian of the optimality condition F is given as the following symmetric
matrix -
. . ~e9
Ty F(Y) = {Dlag(u) glag(z ) AO } ’ (10)

. Note that Vy F'(Y") is nonsingular under full row-rank assumption on A, W;, T;. By applying the
implicit function theorem, the derivatives of the optimal solution Y*(A, b, ¢) with respect to the



scenario collection ¢y, (x;) = {&,}5_, = (A, b, &) are given by:

~ -1 N
VasY" = = (WwFPA,5,0) V4, F(75A,be) (1)
with
or _ [Aie’“], or _ [ 0 } or _ M. (12)
8Ajk 2k € 8bj —€; 0¢y, 0

In the above equations, e; represents a vector of appropriate dimension with 1 in the jth component
and zeros in the remaining ones. Combining (8), (IT) and (I2), we obtain the desired derivatives
%LW by extracting the relevant components of VY *. To compute further the derivative with

respect to w we just need to compute V., ¢, (x;), which can be accomplished via back-propagation.

4 Experiments

More specifically, we implement the resource allocation problem first introduced in Kannan et al.
[2025]]. The neural network is trained using 100 context-scenario pairs and outputs a single scenario.
We compare our algorithm against the methods tested in[Homem-de Mello et al.|[2024]], showing
competititveness with SOA methods. We test the performance of each method by approximating its
corresponding optimality gap using the estimation procedure described in Mak et al.|[1999].
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Figure 1: Comparison of our method (NN) with two Predict then Optimize methods (CART and LS),
two Application-Driven Forcasts methods (AD and M5 +AD) and three Conditional Distribution
methods (ER-SAA, KNN and SAA). The methods are described in[Homem-de Mello et al.| [2024]).

For the model, we implemented a feed-forward neural network with three hidden layers of 128
ReLU units each. We used the Adam optimizer to perform the learning, with a step size of 1073.
the surrogate is regularized with 0.01 while the down-stream problem is unregularized. We trained
the neural network for 20 epochs, which took less than two hours on a computer equipped with an
Intel(R) Core(TM) Ultra 7 155H 3.80 GHz processor.

5 Conclusions and Future Perspectives

Current limitations The work presented in this report is still in the early stages. On the experimen-
tal side, we neither analyze runtime benefits or test large/real-world instances. On the conceptual side,
the method currently only targets convex two-stage problems; settings with integer or nonconvex
recourse would require differentiable relaxations which may not be easy to find. On the computational
side, training entails solving a log-barrier deterministic equivalent at each gradient step; practical
scaling may hence depend warm starts/factorization reuse or decomposition. Future work will aim to
address these issues.
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