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Abstract—Offshore wind is growing in France as part of the
green transition. The French Transmission System Operator
(RTE) will own and maintain the offshore substations linking
wind farms to the onshore grid. Since site access depends on
weather and downtime is costly, maintenance planning must
balance cost and risk. Penalties scale with curtailed energy, except
on a limited number of pre-declared free maintenance days
scheduled in advance without weather forecasts. We model the
maintenance optimization problem as a Markov Decision Process
(MDP). Exact dynamic programming becomes infeasible beyond
a few components, so we use weakly coupled MDP methods to
derive maintenance strategies. The approach is applied to a case
study, using historical weather data to generate scenarios for the
future Centre Manche 1 wind farm. As these assets are new and
failure data are limited, degradation models remain uncertain;
our analysis shows that this uncertainty significantly impacts cost
estimates.

Index Terms—Markov Decision Process, Multistage stochastic
optimization, Offshore substation maintenance, Weakly coupled
dynamic programs

I. INTRODUCTION

The global transition to renewable energy has positioned
offshore wind power as a cornerstone of future energy systems,
with European targets reaching hundreds of gigawatts by 2050.
France’s offshore wind development strategy is particularly
ambitious, aiming to increase installed capacity from the
current 1.5 GW to 45 GW by 2050 [1]. This rapid scaling
presents unprecedented challenges for Transmission System
Operators (TSOs), who must ensure reliable grid integration
while managing substantial operational and financial risks.

The French TSO, RTE, faces unique challenges in connect-
ing these offshore wind farms to the mainland grid. Offshore
electrical substations, which collect, transform, and transmit
electricity from multiple wind turbines to the onshore grid,
represent critical single points of failure. Stations are radially
connected to land, without the mesh redundancy present in
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the rest of the network. Any failure directly impacts wind
farm production and triggers substantial financial penalties.
Offshore substation maintenance differs from onshore mainte-
nance. Weather-dependent accessibility restricts maintenance
operations to periods of favorable conditions, often requiring
several consecutive days of calm sea. The novelty of off-
shore technology means that reliability data are limited to
manufacturer-provided Mean Time Between Failures (MTBF)
estimates, creating significant uncertainty in degradation mod-
eling. Moreover, the harsh marine environment stresses com-
ponents in ways that differ from onshore conditions, making
historical onshore reliability data inadequate for offshore ap-
plications.

Contractual arrangements typically impose penalties propor-
tional to curtailed energy when substations are unavailable,
except during pre-declared free maintenance days that are
allocated through limited annual quotas. This penalty structure
creates a complex optimization problem: maintenance must
be scheduled to minimize both failure-induced outages and
planned downtime, while accounting for weather uncertainty
and the strategic allocation of maintenance quotas. The eco-
nomic implications are substantial—substation failures can
result in penalties worth millions of euros per day, making
optimal maintenance planning critical for the TSO.

TSOs must make irreversible strategic investment decisions
now—such as substation design selection, redundancy levels,
and component specifications—that will determine mainte-
nance costs for the 30-year asset lifetime. For instance, de-
signs incorporating duplicate transformers or enhanced cooling
systems can significantly reduce downtime probability and
maintenance duration, but at increased capital cost. Quan-
tifying the expected maintenance penalties associated with
different design choices is therefore essential for informed
investment decisions. This cost reflects the value of well-
designed maintenance strategies. However, identifying good
maintenance strategies is particularly challenging for offshore
substations due to limited operational experience and high un-
certainty, as previously discussed. To address this, we propose
formulating and solving an optimization problem. While the
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model does not need to capture all operational details—given
that maintenance strategies can be progressively refined over
time—it must adequately represent the key factors that drive
major maintenance cost impacts.

A. Literature Review

Maintenance optimization for wind energy systems has
received considerable attention, with established literature on
onshore [2], [3] and offshore [4] wind turbines. However, these
studies focus on individual turbine maintenance rather than the
centralized substation infrastructure that connects entire wind
farms. The specific challenges of offshore substation main-
tenance, including weather-dependent accessibility, combined
with penalty-driven cost structures and quota-based mainte-
nance planning—remain largely unexplored in the academic
literature.

This paper addresses this gap by proposing a comprehensive
decision support methodology for offshore substation mainte-
nance planning under uncertainty. Our approach is based on
a Markov Decision Process (MDP) formulation [5], a well-
established framework for sequential decision-making under
uncertainty that has proven effective in maintenance optimiza-
tion [6]. The MDP framework naturally accommodates the
stochastic nature of component degradation, weather patterns,
and the multistage decision structure inherent in maintenance
planning. The state of the substation is defined by the joint
states of its individual components. A major challenge arises
from the exponential growth of the state space with the number
of components, making it computationally intractable to solve
the MDP exactly using dynamic programming. This can
be addressed using approximate dynamic programming [7].
Specific algorithms have been proposed for weakly coupled
[8], [9] and decomposable MDPs [10], which model multi-
component systems requiring coordinated or global actions.
We explore the fluid approximation introduced in [10], a
solution method designed for decomposable MDPs that yields
high-quality solutions.

B. Contributions

The key contributions of this work are threefold: i) A novel
multi-horizon MDP formulation that captures the temporal
structure of offshore maintenance planning, including oper-
ational maintenance and strategic quota allocation; ii) A fluid-
approximation-based policy and numerical results showing its
performance; iii) A sensitivity analysis with respect to the
choice of the degradation model.

C. Paper Structure

The remainder of this paper is organized as follows. Section
II introduces the optimization model. Section III presents a
fluid-approximation-based policy for addressing it. Section IV
reports computational results obtained from a medium-scale
substation model and analyzes the sensitivity of cost estimates
to uncertainties in the degradation model. Finally, Section V
concludes the paper and outlines potential directions for future
research.

II. OPTIMIZATION MODEL

A. Problem statement

We formulate the offshore substation maintenance optimiza-
tion problem as a finite-horizon MDP with time-dependent
components. The MDP incorporates the following key mod-
eling assumptions:

Assumption 1: Time is discretized into two-month periods.
To benefit from free maintenance days in a two-month period,
the TSO must declare them in advance, at the start of that given
period. Therefore, we assume that maintenance is scheduled
at the beginning of each period.

Assumption 2: Both the wind park’s production and substa-
tion accessibility are weather-dependent.

Assumption 3: Maintenance is planned without consider-
ation of weather forecasts, reflecting the fact that forecasts
beyond two weeks are not available.

Assumption 4: Component replacement may span multiple
days, during which the component remains powered down
from the planned maintenance start date until its completion.

Assumption 5: Maintenance operations may fall behind
schedule when accessibility is poor, which can cause addi-
tional costs. However, all maintenance operations scheduled
at the start of a two-month period must be completed within
that same period.

To model maintenance scheduling in line with Assumption
1, we introduce scheduling stages of two months. We assume
that the substation’s degradation state is fully observable. In
our formulation, the system state at the start of each scheduling
stage consists of the degradation state of each component of
the substation and the number of remaining free maintenance
days. An action for a scheduling stage specifies both the
maintenance tasks scheduled during the stage and the set
of pre-declared free maintenance days for that stage. The
objective is to minimize the long-run expected cost produced
by the maintenance scheduling strategy. The system dynamics
and stage costs induced by an action are summarized in Fig. 1;
further details follow in the next paragraphs.

B. Time, state and action space

A timestep T in the MDP corresponds to a scheduling
stage. We denote by T the total number of scheduling stages
considered. Since producer contracts typically last 30 years
and each year contains 6 scheduling stages (two months each),
we set T = 180 scheduling stages. The degradation of the
substation and the weather are modeled with a daily time step
t. For notational clarity, we assume that each scheduling stage
has the same number of time steps which we denote by t. We
write TT = [tT : t(T + 1) − 1] the set of daily time steps
associated with scheduling stage T .

State. The substation is divided into a set C of components
such that the degradations of two components are independent.
A component may be composed of several submodules; for
example, the “converter” component is composed of several
thousand “thyristor” submodules. C depends on the design
of the substation. Only components whose degradation can
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Fig. 1: Dynamics between two scheduling stages.
The first two rows represent the maintenance schedule by component and the
free maintenance days decided at the beginning of the scheduling stage. The
middle row shows the performed maintenance that is affected by the weather.
The bottom row shows the dynamics of the degradation state.

impact transmission capacity are included—typical examples
for an HVDC (High Voltage Direct Current) substation are
transformers, converters, converter cooling systems, air condi-
tioning units for the conversion hall, and busbars. We represent
the overall condition of the substation by a joint degradation
state x, which captures the degradation levels of all relevant
components. Each component c ∈ C is modeled independently
using a discrete degradation scale with nc possible states,
ranging from state 1 (new) to state nc (failure). For example,
in Fig. 1, component 1 has n1 = 3 states: state 1 (green),
state 2 (orange), and state 3 (red). The joint degradation state
x = (xc)c∈C ∈ X , where X =

⊗
c∈C [1 : nc], is then defined

as the cartesian product of the individual component states.
This makes a total of n =

∏
c∈C nc possible joint states. We

denote by k the number of free maintenance days remaining at
the beginning of the scheduling stage. The state of the MDP
is the pair (x, k).

Action. At the start of each scheduling stage, the TSO
selects which maintenance tasks to schedule during that period
and the planned start dates for those tasks. For notational
simplicity, we focus on full repairs only, although the model
can be extended to allow partial repairs. We enforce no
workforce capacity constraint; multiple components may be
maintained simultaneously. The model could also be adapted
to account for these constraints. For each daily time step
t ∈ TT and component c ∈ C, we define ut,c = 1 if a
maintenance on component c is scheduled to begin on day
t, and 0 otherwise. The scheduled maintenance for stage T is

the set of binary variables

uT = (ut,c)t∈TT ,c∈C ∈ {0, 1}TT×C . (1)

Additionally, the TSO must schedule a set of free maintenance
days KT ∈ P(TT ) on stage T , where P(TT ) is the power set
of TT . The action of the MDP at scheduling stage T is the
pair (uT,KT ) ∈ {0, 1}TT×C × P(TT ).

C. Dynamics between two scheduling stages

Let T be a scheduling stage and kT be the number of free
maintenance days remaining at scheduling stage T . Let K
denote the annual quota of free maintenance days that the
TSO is contractually allowed to use. The Quota dynamics is

kT+1 =

{
K if T + 1 ≡ 0 (mod 6),

kT − |KT | otherwise.
(2)

This constraint ensures that kT is reset to K every year,
i.e., every 6 scheduling stages. To ensure that the contrac-
tual quota is not exceeded, we add the domain constraint
kT ≥ 0. We introduce a finite set of weather scenarios WT .
A weather scenario w ∈ WT is a time series of length t
describing two correlated daily variables: accessibility and
production. At daily time step t ∈ TT under scenario w,
the substation’s accessibility is represented by hw

t ∈ {0, 1}
where hw

t = 1 indicates that the substation is accessible
at day t (and 0 otherwise). This parameter is obtained by
thresholding the wave height: if the daily wave height exceeds
the threshold, the substation is considered inaccessible. The
production at daily time step t under scenario w is denoted
by pwt ∈ R+. Following Assumption 3, maintenance is
planned without any knowledge of accessibility. Thus, the
scheduled maintenance introduced in (1) does not depend on
the weather. But the weather influences the actual end date
of maintenance. We introduce the performed maintenance at
time t in weather scenario w on component c, it is a binary
variable mw

t,c ∈ {0, 1} that equals 1 if c is maintained at
t and 0 otherwise. If weather conditions are unfavorable,
an ongoing maintenance operation may be paused until the
site becomes accessible again. Under Assumption 5, however,
any maintenance that has been scheduled at the start of
the period cannot be canceled. To minimize costs, work is
resumed and continued as soon as access permits. On Fig. 1,
a maintenance on component 1 has been scheduled at daily
time step t. The scheduled maintenance requires two workdays
on the substation, and two free maintenance days have been
scheduled. Maintenance starts on day t as scheduled. But the
substation is not accessible on day t+ 1, so the maintenance
is postponed to day t+2. The TSO pays a penalty to maintain
the substation on day t + 2. To represent this in the model,
we introduce a set of counters qwt = (qwt,c)c∈C . The counter
qwt,c ∈ N tracks the number of maintenance days remaining
for component c at daily time step t under scenario w (with
qwt,c = 0 when no maintenance is in progress). Let dc ∈ N be
the replacement time of component c (in workdays). We now
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state the Accessibility constraints. The dynamics of qwt,c for all
c ∈ C and w ∈ W is

qwt+1,c = qwt,c −mw
t,c + dcu

w
t+1,c ∀t ∈ TT , (3a)

qwtT,c = dcu
w
tT,c. (3b)

At the start of a scheduled maintenance, the counter is in-
creased by the required number of workdays and reduced by
one after each maintenance day performed. The maintenance
is performed as soon as the substation is accessible, thus mw

t,c

satisfies the relation

mw
t,c =

{
hw
t if qwt,c ≥ 1,

0 otherwise.
∀t ∈ TT , ∀c ∈ C (4)

A margin M is imposed to prevent scheduling maintenance
during the final days of the stage, ensuring completion before-
hand

uw
t,c = 0 ∀t ∈ [t(T + 1)−M : t(T + 1)− 1]. (5)

Degradation state dynamics are modeled at the component
level, as the degradations of different components are assumed
independent. For each component c ∈ C, let pc(xc, x

′
c) denote

the probability of transitioning from state xc to state x′
c

without maintenance. We assume that a component cannot
spontaneously improve its condition, so pc(xc, x

′
c) = 0 if x′

c <
xc. The transitions of a component’s degradation state depends
on the maintenance performed. For component c, the transi-
tion matrix associated with a given performed maintenance
m ∈ {0; 1} is a right stochastic matrix P c(m) ∈ [0, 1]nc×nc .
Applying no maintenance yields random transitions while
performing a full repair restores the component to the “new”
state, thus we have

P c(0)xc,x′
c
= pc(xc, x

′
c), (6a)

P c(1)xc,x′
c
= 1{x′

c=1}. (6b)

Note that the performed maintenance is weather-dependent,
thus the degradation state evolution over the scheduling stage
is weather-dependent. Consequently, we denote xw

t the degra-
dation state at daily time step t in weather scenario w.

D. Objective and Bellman equation

The objective of the problem is to minimize expected penal-
ties that depend on the production of the wind park, substation
capacity, and free maintenance days. Following Assumption 4,
the capacity of the substation is a function C : X ×N −→ R+

of the degradation state of the substation and the counter
tracking the number of maintenance days still to be performed.
This function depends on the substation design. For example,
if the transformers are redundant, a maintenance or a failure in
one of the transformers does not cause a capacity drop. A fuller
example is given in Annex A. For the sake of clarity, this paper
assumes that the model objective is equal to the penalties due
to capacity loss. The model could easily be extended to include
other costs (e.g., components, maintenance, or transport costs).

Further, we assume that the penalty cost per unit of curtailed
production is 1. More precisely, the cost over one daily time
step t of scheduling stage T in weather scenario w is

1{t/∈KT } (p
w
t − C(xw

t , q
w
t ))

+
. (7)

The indicator ensures that the cost is 0 on free maintenance
days. The second factor ensures that the cost is proportional
to the curtailed power otherwise. Let us denote VT the value
function at scheduling stage T . VT (xtT , kT ) represents the
minimum expected cost from scheduling stage T to the end of
the horizon, starting from state (xtT , kT ). VT equals 0 for each
state, and the value function satisfies the Bellman equation

VT (xtT , kT ) = min
uT,KT

1

|WT |
∑

w∈WT

E

[ ∑
t∈TT

1{t/∈KT }×

(
pwt − C(xw

t ,q
w
t )

)+
+ VT+1

(
xw
t(T+1), kT+1

)]
(8)

subject to Quota dynamics (2)
Accessibility contraints (3), (4), (5).

The expectation is over the stochastic degradation state dy-
namics, which start deterministically at xtT in all weather
scenarios; transition probabilities in weather scenario w then
depend on the performed maintenance in w. We assume that
the system starts in the deterministic state where x = 1C
and k = K, where 1C is the vector of length |C| with all
components equal to one. This means that all components
are new and no free maintenance days have yet been used.
V0(1C ,K) is an estimation of the maintenance cost. We
emphasize that the maintenance of the components is coupled
due to the cost function and free maintenance days.

III. POLICY BASED ON FLUID APPROXIMATION

We define a policy π as a sequence of decision rules
π0, π1, . . . , πT−1, where each πT is a mapping from states
to actions. Cost estimation requires computing the optimal
policy π∗. The actions associated with π∗ are those that attain
the minimum in Bellman equation (8); that could be rewritten
as a Mixed-Integer Linear Program (MILP) and solved with
a standard MILP solver. However, the exponential size of
the state space prevents solving the problem using Dynamic
Programming (DP) when modeling realistic substations. Any
MDP can be formulated as a Linear Program (LP), whose
solution from a given initial state yields an optimal action. Un-
fortunately, since the variables encode the probability of being
in a given state, the size of the LP is exponential in the number
of components. Like for DP, this makes it intractable in our
case. Fortunately, our MDP is structured as a weakly coupled
MDP. This can be exploited to build an outer approximation of
the polytope of reachable probabilities given feasible policies,
which is of tractable size. Based on it, we design a heuristic:
for any given state, we build the approximation, solve it, and
take the first decision corresponding to the solution. The rest
of the section describes the approximation.
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Following [10], we introduce a fluid approximation of the
problem at the current state (x,k) and scheduling stage T .
It approximates the MDP at stages H ∈ [T : T + H] where
H is a given horizon. Typically, we consider 6 stages for one
year. We denote the action space at the scheduling stage H
by A(H) = {0, 1}TH×C × P(TH). Notably, the number of
variables in the fluid approximation grows only linearly with
the number of components |C|. While the dynamics induced
by actions are decomposable by component, the cost is not.
We therefore introduce a decomposable surrogate cost function
that approximates the true cost.

Decomposable surrogate cost. We associate a subsystem
with each component c of the substation. The subsystem state
is the pair (xc, k) and we denote by Sc = [1 : nc] × [0 : K]
the subsystem state space. We define a surrogate cost function
that is additive in subsystem states. For each component c ∈ C
and subsystem state s = (xc, k) ∈ Sc, let ℓcs,a(H) denote the
subsystem surrogate cost. This is the expected cost over the
scheduling stage H when action a is taken, component c is in
degradation state xc, and all other components are new at the
beginning of the stage, averaged over all weather scenarios.
This cost is precomputed. The approximate cost resulting from
taking action a is

∑
c∈C ℓ

c
s,a(H).

Marginal probability flow. Such as in [10], the decision
variables correspond to the marginal probabilities of each
subsystem being in each of its possible states while each
possible action is taken at each stage. Let νcs,a(H) be the
probability that at scheduling stage H ∈ [T : T + H]
component c ∈ C is in state s ∈ Sc and action a ∈ A(H) is
chosen. Let pcs,s′,a(H) denote the probability that component
c transitions from state s to state s′ between the scheduling
stages H and H + 1 when action a ∈ A(H) is taken. For
all c ∈ C, H ∈ [T : T + H − 1], s′ ∈ Sc, we express
the temporal evolution of these probabilities through Flow
constraints inspired by [10], where p is a parameter and ν
a variable:

∑
a∈A(H+1)

νcs′,a(H + 1) =
∑
s∈Sc

∑
a∈A(H)

pcs,s′,a(H)νcs,a(H).

(9)
Let Aa(H) be a variable representing the probability that
action a ∈ A(H) is taken at time H . We have the Consistency
constraints from [10]

∑
s∈Sc

νcs,a(H) = Aa(H) ∀H ∈ [T : T +H], c ∈ C, (10)

∀a ∈ A(H).

The following constraint from [10] ensures that the degrada-
tion state at scheduling stage T is x and the number of free
maintenance days remaining is k,∑

a∈A
νcs,a(T ) = 1s=(xc,k) ∀c ∈ C, s ∈ Sc. (11)

We also introduce µk(H), the probability that the number of

free maintenance days remaining at scheduling stage H is
k, and enforce the Non-negativity of probabilities constraints
from [10]

νcs,a(H) ≥ 0 ∀H ∈ [T : T +H], c ∈ C, s ∈ Sc, (12a)

∀a ∈ A(H)

Aa(H) ≥ 0 ∀H ∈ [T : T +H], a ∈ A(H) (12b)

µk(H) ≥ 0 ∀H ∈ [T : T +H], k ∈ [0 : K]. (12c)

Finally, we add two Additional constraints coupling the sub-
systems, which are specific to our problem. The first one is
the consistency constraint

∑
xc∈[1:nc]
a∈A(H)

νc(xc,k),a
(H) = µk(H) ∀H ∈ [T : T +H] (13)

∀c ∈ C, k ∈ [0 : K].

The second one prevents using more free maintenance days
than are available:

νc(xc,k),(u,K)(H) = 0, ∀H ∈ [T : T +H], c ∈ C, (14)

∀xc ∈ [1 : nc], k ∈ [0 : K],

∀u ∈ {0, 1}TH×C ,K ∈ P(TH), |K| > k.

Fluid approximation. The fluid approximation is then for-
mulated as a linear program:

minimize
ν,A,µ

∑
H∈[T :T+H]

∑
c∈C

∑
s∈Sc

∑
a∈A(H)

ℓcs,a(H)νcs,a(H)

(15)
subject to Flow constraints (9)

Consistency constraints (10), (11)
Non-negativity of probabilities (12)
Additional constraints (13), (14).

Fluid policy. The fluid heuristic policy takes as parameters
the surrogate subsystem costs ℓ, transition probabilities p and
the fluid horizon H. Given a scheduling stage T , we build
and solve the problem (15) corresponding to the current state
(x,k) with parameters ℓ, p and H . Let ν∗, A∗, µ∗ be an
optimal solution of this problem. The fluid policy selects the
action with the highest probability in the fluid approximation
for the next scheduling stage: πT (x,k) = argmaxa∈A A∗

a(T ),
thus projecting back from a fluid solution to a discrete policy.

IV. USE CASE ANALYSIS

A. Case study

To evaluate the practical relevance of the proposed method,
we apply it to a representative RTE offshore substation corre-
sponding to the upcoming Centre Manche 1 project found in
[12]. The case study focuses on a monopole HVDC offshore
substation represented with a total of seven components.
Replacement times vary by component, and an annual quota
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of Q = 6 free maintenance days is assumed (equal to
the maximum replacement time). We use standard MTBF
values for onshore components. A detailed description of
the substation model and replacement times is provided in
Annex A. Accessibility scenarios are derived from 80 years
of hourly wave height data from Copernicus [11]. We compute
daily averages and apply a 1.0-meter wave height threshold to
determine accessibility, yielding one scenario per scheduling
stage each year. These scenarios vary by month but not
by year. While production scenarios could theoretically be
derived from wind speed data, this requires knowledge of
turbine types, which we lack. Since accessibility governs
maintenance feasibility on free maintenance days, it is more
critical than production. For simplicity, we assume constant
production within each scheduling stage, proportional to the
average load factor of French offshore wind farms during
the corresponding two months in 2024 [13]. Combining these
assumptions, we construct a set WT of 80 weather scenarios
per scheduling stage T , where production depends on T but
not on the weather scenario. Consider a policy π such as the
fluid policy presented in the previous section. We compute the
cost associated with π using Monte Carlo simulations. Several
trajectories are simulated under the policy, and the average cost
is returned. The procedure is as follows.

• 1. Set the current scheduling stage T to 1 and the current
state to (1C ,K).

• 2. Randomly select a weather scenario w ∈ WT .
• 3. Choose the action a for the current state and stage

according to π.
• 4. Simulate state transitions under w and a throughout

the scheduling stage and calculate the costs over daily
time steps. Set the current stage to the value of the state
at the end of the scheduling stage and T to T + 1.

• 5. Repeat steps 2–4 while T < 180 and sum the costs
over the concession period.

• 6. Repeat steps 1–4 N times and compute the average
total cost; the choice of N is discussed below.

The fluid approximation is formulated using the Gurobi
1.7.5 solver integrated with JuMP 1.29.1 in Julia 1.11.6. Solv-
ing the fluid approximation for a given state and scheduling
stage takes less than 30 seconds on a computer equipped with
an 11th Gen Intel® Core™ i7-11850H processor. The entire
experiment requires under 5 hours of total computing time.
We consider the policy given by the fluid approximation with
a time horizon of one year, with the full set of 80 weather
scenarios WT for all scheduling stage T . We compare this to
two benchmark policies using three metrics: the mean simu-
lated cost over 30 years, the 0.05% Value at Risk (VaR0.05),
and the frequency of simulations with strictly positive costs
(P(cost > 0)). We take N = 10, 000 for each policy, which
results in standard errors below 3% of the estimated costs.
The first benchmark policy is an operational rule that involves
performing corrective maintenance throughout the year and
scheduling preventive maintenance during the summer because
accessibility conditions are better. Corrective maintenance is

performed as soon as possible when capacity is below nominal
capacity. Preventive maintenance is performed in July on all
components that are not in state 1, if the necessary free
maintenance days are available. The comparison is available
in Tab. I. The operational rule is about twice as expensive as
the fluid policy. It is also exposed to potentially higher costs in
the tail of the cost distribution. The second benchmark policy
is a fluid heuristic with surrogate subsystem costs ℓ assuming
perfect accessibility. More precisely, for all T , WT contains
only one scenario w with hw

t equals 1 for all t ∈ TT and
pwt is as before. The cost induced by this weather-ignoring
policy is, on average, 34 times higher than the fluid policy.
Indeed, maintenance is planned to maximize quota usage under
perfect accessibility, any additional maintenance days resulting
from delays experienced under actual accessibility conditions
are conducted outside the established quotas. A commented
simulation example with the fluid policy and a decomposition
of costs by components are available in Annex B.

TABLE I: Cost over 30 years depending on the policy.

policy mean VaR0.05 P(cost > 0)

fluid 126 257 0.05
operational 249 1671 0.31
fluid no W 4343 8792 1.00

B. Sensitivity to model ambiguity
Up to this point, the degradation model was assumed to

be known. In practice, however, multiple sources of model
ambiguity may arise. Some are exogenous, such as incom-
plete or unavailable data from manufacturers, or the lack of
failure history in offshore environments. Others stem from
the modeling process itself. For some components, when
representing degradation using Markov chains, the degradation
states cannot be clearly delineated due to the lack of well-
defined failure modes. Modeling decisions must be made
regarding which components to include and how to aggregate
them within the global degradation model. In this work, we
assume component independence; however, this assumption
may not fully reflect real-world dependencies.

We study uncertainties in the degradation model of one of
the components. In this work, we rely on classical MTBF
values derived from onshore component data. Offshore com-
ponents are subject to harsher environmental conditions and
greater mechanical stress, leading to potentially lower MTBFs
than their onshore counterparts. As costs decrease with higher
MTBF, a conservative approach uses MTBF values at the
lower bound of plausible estimates. This reflects the higher
risk associated with underestimating maintenance costs from
the perspective of the TSO. Unlike the MTBF, ambiguity in
transition probabilities is more difficult to manage because
there is no direct relation between these probabilities and costs.
In our analysis, we fix the MTBF of the pump system and
explicitly account for uncertainty in transition probabilities,
examining how variations in these probabilities impact costs.
All other components are modeled with a fixed degradation
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model as in the previous section. The pump system is com-
posed of two identical units. The system transitions from full
operation (two units working) to degraded operation (one unit
working), and finally to failure. More precisely, we introduce
a family of transition matrices with three states parametrized
by a variable θ

Pθ =

1− 1
(1−θ)MTBF

1
(1−θ)MTBF 0

0 1− 1
θMTBF

1
θMTBF

0 0 1

 ,

where θ represents the average time spent in the interme-
diate state normalized by the MTBF. This parametrization
preserves the component’s MTBF. We examine three cases:
θ = 0.1, representing rapid degradation after redundancy loss;
θ = 0.67, corresponding to the previous model with identical,
independently degrading, non-aging pumps; and θ = 0.99,
where redundancy is lost early but the component functions in
degraded mode for most of its lifetime. Evaluating costs solely
based on the model used for optimization is not sufficient,
as uncertainties in the degradation dynamics may still persist
once operations begin at the offshore sites. We consider three
degradation models and compute nine cost values: each policy
is optimized under one model and evaluated under all three.
The columns correspond to the parameters used for optimiza-
tion (i.e., to derive the fluid policy), while the rows indicate
the parameters used in the simulations to estimate the policy’s
cost. The results, shown in Table II1, reveal a high sensitivity
of cost estimates to the choice of the degradation models. A
conservative cost estimate is given by the maximum value in
the column with the smallest maximum value (highlighted in
bold), representing the worst-case cost of the best-performing
policy.

TABLE II: Cost over 30 years depending on the MDP used
for optimization and estimation.

θ est \ θ opt 0.99 0.67 0.1

0.99 1195 1200 1438
0.67 192 126 144
0.1 335 204 194

V. CONCLUSIONS AND PERSPECTIVES

This paper presents a method for evaluating the penalties
paid by the TSO to energy producers in the event of unex-
pected failures or unplanned maintenance of future offshore
substations, using an MDP framework. The cost is evaluated
through maintenance scheduling that incorporates degradation
models and weather conditions. Strategic investment decisions
are treated as parameters within the MDP, allowing for direct

1Table II shows that costs do not vary monotonically with θ. When θ is
too large, costs increase because there are insufficient free maintenance days
to perform preventive maintenance at each scheduling stage when pumps are
in state 2. Conversely, when θ is too small, costs are also high, as transitions
from 1 to 2 and from 2 to 3 can occur within the same scheduling stage,
before the next maintenance opportunity.

cost comparisons, provided that the degradation models can
be represented as Markov chains. Numerical results on the
case study show the potential high costs incurred due to the
lack of weather forecasts at the time when maintenance is
scheduled. This could motivate improvements in renewable
energy production and accessibility forecasts. Although this
was not addressed in the numerical applications of this paper, it
would be possible to incorporate more operational constraints
within the same framework. For example, we could include
limited workforce capacity to better reflect operational limita-
tions in maintenance planning. The objective function can be
adapted to reflect the specific priorities of the TSO, such as
incorporating maintenance costs alongside the penalties. The
absence of historical offshore failure data introduces ambiguity
in degradation modeling, which in turn impacts the accuracy
of cost estimates. This point is critical for the TSO, which
must mitigate the risk. A common initial approach is to
select a single degradation model from the ambiguity set—the
collection of plausible degradation models and optimize ac-
cordingly. However, given the critical nature of cost estimation
and the numerical results presented, this method appears to
be insufficient. Future work will focus on integrating model
ambiguity directly into the policy computation process.
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ANNEX A
SUBSTATION MODEL

The structure of the substation is summarized in Table III.
We consider a substation with one converter, one water circuit,
12 fans, 2 pumps, 2 transformers, one converter cooling
system, and one busbar system. All elements of the same type
are grouped together as a single component.

TABLE III: Number of states n, MTBF and replacement time
d for each component.

c Component n MTBF (years) d (days)

1 Converter 12 588 6
2 Water Circuit 3 43 1
3 Fans 8 43 1
4 Pumps 3 43 2
5 Transformers 3 3333 1
6 Converter Cooling 3 122 1
7 Busbar 3 4762 1

For components composed of multiple identical subcompo-
nents, the discrete states are associated with the number of
subcomponents still working. We compute transition probabil-
ities assuming independent failures and no aging, which yields
binomial transitions whose parameters are calibrated to match
the component MTBF. More details on the modeling of each
component follow.

• Converter. The converter is modeled as 1680 indepen-
dent submodules. The substation is assumed to deliver
full power if at least 1670 submodules are operational;
otherwise no power is transmitted.

• Fans. Of the 12 fans, two are redundant. Capacity de-
creases proportionally to the number of broken fans once
failures exceed the redundancy threshold.

• Transformers and pumps. Of the two transformers, one
is redundant. The same applies to the pumps.

• Other components. For the water circuit, the converter’s
cooling system and busbar we assume three degradation
states. The substation delivers full power in states 1
and 2 and no power is transmitted in state 3. Transitions
occur only to the next worse degradation level; transition
probabilities are chosen so that the expected times in
states 1 and 2 are equal and calibrated to match the
component’s MTBF.

The capacity function is defined as follows:

C(x, q) =
∏
c∈C

1{qc=0}×
∏
c∈C
c ̸=3

1{xc<nc}×
(
100−20(x3−3)+

)
.

The first factor ensures that the capacity is zero whenever at
least one component is undergoing maintenance (i.e., some
qc > 0). The remaining factors express how capacity depends
on component degradation states. The maximum capacity is
100.

ANNEX B
SIMULATION RESULTS

Fig. 2 illustrates a simulation under the fluid policy. Com-
ponent 4 is broken so its maintenance is scheduled at the
start of the next planning stage. Due to poor accessibility, the
maintenance requires more free days than available, and the
TSO pays a penalty. To take advantage of free maintenance
days, all other maintenances are scheduled at the same time
except for component 1, which has the longest maintenance, to
avoid extra costs. Then a minor failure occurs on component
6. No action is taken that summer as maintenance days
are exhausted; quotas are renewed the following year, and
maintenance is performed then. There is no maintenance on 1
because it is in state 2 (out of 12), which is not critical.

Fig. 2: Simulation results over 14 planning stages for a single
weather and degradation trajectory with the fluid policy.
Top plot: degradation levels and maintenance by component. Second plot:
wave height for the considered scenario. Third plot: accessibility percentage
across 80 weather scenarios. Bottom plot: incurred cost.

Table 3 shows the mean simulated cost by component under
the fluid policy, whose total cost (126) is shown in Fig. I. The
pump is the costliest component due to its low MTBF and
long maintenance time.

Fig. 3: Mean costs per simulation associated with failures and
maintenance for each component.
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