Primal-dual algorithm for multistage stochastic optimization

Solène Delannoy-Pavy (RTE, Ecole des Ponts ParisTech)
Axel Parmentier (Ecole des Ponts ParisTech)

01/08/25

Dynamic Vehicle Routing Problem with Time Windows¹

Dynamic Vehicle Routing Problem with Time Windows¹

¹Baty et al. 2024.

Dynamic Vehicle Routing Problem with Time Windows¹

¹Baty et al. 2024.

Dynamic VRPTW

A solution of this problem is a **policy**:

$$\pi: \quad \mathcal{X} \quad o \quad \mathcal{Y}$$
 $\underbrace{s_t}_{\text{et of customers}} \mapsto \underbrace{u_t}_{\text{set of routes}}$

Objective: find π^* , serving all customers before end of horizon, and minimizing total cost

$$\pi^\star = rg \min_{\pi} \mathbb{E} \left[\sum_{ ext{epochs } t} ext{ total cost of routes in decision } u_t = \pi(s_t)
ight]$$

3/21

Combinatorial Markov Decision Processes

Setting:

- ightharpoonup High-dimensional set of states ${\cal S}$
- ightharpoonup Finite but combinatorial set of decisions $\mathcal{U}(s)\subset\mathbb{R}^{d(s)}$
- ightharpoonup Exogeneous independent random variables ξ
- **Dynamics** $s' = F(s, u, \xi)$ and initial probability distribution on S
- ightharpoonup Cost function c(s, u)

Goal: find a policy π^* (possibly random) minimizing the total cost

$$\pi^* \in rg \min_{\pi} \mathbb{E}_{oldsymbol{\xi}, oldsymbol{u_t} \sim \pi(\cdot | oldsymbol{s_t})} \left[\sum_{t} c(oldsymbol{s_t}, oldsymbol{u_t}))
ight]$$

Full information on history

For a given T we have N samples

$$\xi_i = (\xi_{i,1}, \ldots, \xi_{i,T})$$

The following problem is hard to solve for combinatorial MDPs

$$\min_{(u_{i,t})_{i,t}} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} c(s_{i,t}, u_{i,t})$$

s. a.
$$u_{i,t} \in \mathcal{U}(s_{i,t})$$

$$s_{i,t+1} = F(s_{i,t}, u_{i,t}, \xi_{i,t+1})$$

$$s_{i,0}=s$$

such as
$$\xi$$

$$u_{i,t} = u_{i',t} \quad \forall i,i'$$
 such as $\xi_{i,1} = \xi_{i',1}, \dots, \xi_{i,t} = \xi_{i',t}$ Nonanticipativity constaints

Classical assumptions in stochastic programming

We have an efficient algorithm to solve the determistic single scenario problem

$$\min_{u_{[T]}} \sum_{t=0}^{T} c(s_t, u_t) - \theta_t \top u_t$$
s. a. $u_t \in \mathcal{U}(s_t)$

$$s_{t+1} = F(s_t, u_t, \xi_{t+1})$$

$$s_0 = s$$

where θ_t are dual vectors.

²Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. ISSN: 0041-1655. DOI: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Epoch decisions can be seen as the solution of a Prize

Collecting VRPTW:

- Serving customers is optional
- ▶ Serving customer n gives prize θ_n
- ▶ **Objective**: maximize total profit minus routes costs

$$\max_{u \in \mathcal{U}(s_t)} \underbrace{\sum_{(n,m) \in s_t^2} \theta_n u_{n,m}}_{\text{total profit}} - \underbrace{\sum_{(n,m) \in s_t^2} c_{n,m} u_{n,m}}_{\text{total routes cost}}.$$

► Algorithm: Prize Collecting Hybrid Genetic Search

²Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. ISSN: 0041-1655. DOI: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Difficulty: no natural way of computing meaningful prizes

²Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. ISSN: 0041-1655. DOI: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Solution: use a neural network to predict request prizes $\theta = \varphi_w(s_t)$

 $[\]rightarrow$ Policy π_w

²Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. ISSN: 0041-1655. DOI: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

State of the art: imitate anticipative decisions Baty et al. 2024

We rebuild the anticipative decisions a posteriori

- ⇒ use COaML (Combinatorial Optimization augmented ML)
- **➡** train by imitating anticipative trajectories

Multi-components Ressource constrained Maintenance Problem (MRMP)

- n components
- maintain at most r at each stage

State

$$s_t = s_1, \dots, s_n \in \mathcal{S}_1 \times \dots \times \mathcal{S}_n$$

Decision $u_t = u_1, \dots, u_n \in [0, 1]^n$

$$\sum_{i=1}^n u_i \leq r$$

CO layer: maintaining component n gives prize θ_n

$$\underbrace{ \begin{array}{c} \mathsf{State} \\ \hline s_t \end{array}} \underbrace{ \left(\begin{array}{c} \mathsf{Neural\ Network} \\ \varphi_w \end{array} \right) \underbrace{ \begin{array}{c} \mathsf{Maintenance\ prizes} \\ \hline \theta_i \end{array}} \underbrace{ \left[\begin{array}{c} \mathsf{max}_{\sum_{i=1}^N u_i \leq 1} \sum_{i=1}^N \theta_i \top u_i \end{array} \right] \underbrace{ \begin{array}{c} \mathsf{Decision} \\ \hline u_i \end{array} \right] }$$

Anticipative solutions can be bad - we need coordination!

Imitate expert anticipative trajectories

Bad performance on the MRMP

The states in our training set \mathcal{D} are poor

We should solve

$$\min_{w} \mathbb{E}_{s \sim \delta_{w}} \Big[\mathcal{L} \big(\varphi_{w}(s), \delta^{*}(s) \big] \Big]$$

while we solve

$$\min_{w} \mathbb{E}_{s \sim \delta^*} \Big[\mathcal{L}(\varphi_w(s), \delta^*(s)) \Big]$$

Building $\mathcal D$ is a classical problem in Reinforcement Learning. One solution is to update the dataset for expert demonstration, for example using DAgger³ ($\alpha \in [0,1]$)

$$\alpha \delta^* + (1 - \alpha) \delta_w$$

³Ross, Gordon, and Bagnell 2010.

Anticipative solutions can be bad - we need coordination!

Imitate anticipative decisions

+ the learner updates the dataset for expert demonstration

The gap with the optimal solution is still huge.

Coordinating decisions at the current time step

For a given T we have N samples

$$\xi_i = (\xi_{i,1}, \ldots, \xi_{i,T})$$

$$\min_{(u_{i,t})_{i,t}} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} c(s_{i,t}, u_{i,t})$$

s. a.
$$u_{i,t} \in \mathcal{U}(s_{i,t})$$

$$s_{i,t+1} = F(s_{i,t}, u_{i,t}, \xi_{i,t+1})$$

$$s_{i,0} = s$$

$$_0 = s$$

Dynamics

 $u_{i,t} = u_{i',t} \quad \forall i, i'$ such as $\xi_{i,1} = \xi_{i',1}, \dots, \xi_{i,t} = \xi_{i',t}$ Nonanticipativity constaints

Coordinating decisions at the current time step

For a given T we have N samples

$$\xi_i = (\xi_{i,1}, \ldots, \xi_{i,T})$$

$$\min_{(u_{i,t})_{i,t}} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} c(s_{i,t}, u_{i,t})$$

s. a.
$$u_{i,t} \in \mathcal{U}(s_{i,t})$$

$$s_{i,t+1} = F(s_{i,t}, u_{i,t}, \xi_{i,t+1})$$
 Dynamics

$$s_{i,0} = s$$

$$u_{i,1} = u_{i',1} \quad \forall i,i'$$

First stage nonanticipativity constaints

We try to learn the solutions of the two-stage approximation of the sampled problem

Corresponding empirical cost minimization problem

Cost in the two-stage approximation:

$$c^{2\mathrm{S}}(s,u,\xi) = c(s,u) + Q(s,u,\xi)$$
Recourse cost: $Q(s,u,\xi) = \min_{u_{[1:T]}} \sum_{t=1}^{T} c(s_t,u_t)$
s.t. $s_1 = F(s,u,\xi_1)$
 $s_{t+1} = F(s_t,u_t,\xi_{t+1}) \quad \forall t \in [1:T-1]$
 $u_t \in \mathcal{U}(s_t) \quad \forall t \in [1:T]$

The first stage solutions of the previous problem are solutions to

$$\min_{u \in \mathcal{U}(s)} \frac{1}{N} \sum_{i=1}^{N} c^{2S}(s, u, \xi_i)$$

Learning coordinated policies

We want to learn policies minimizing the empirical cost

$$\min_{w} \; \mathbb{E}_{\boldsymbol{s} \sim d_{w}} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\boldsymbol{u} \sim \pi_{w}(\cdot \mid \boldsymbol{s})} \left[c^{2S}(\boldsymbol{s}, \boldsymbol{u}, \xi_{i}) \right] \right]$$

Assuming that we have sampled a dataset $\mathcal{D} = (s_i, \xi_i)_{i \in [N]}$

$$\min_{w} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{oldsymbol{u} \sim \pi_{w}(\cdot \mid oldsymbol{s}_{i})} \Big[c^{2\mathrm{S}}(oldsymbol{s}_{i}, oldsymbol{u}, \xi_{i}) \Big] \right]$$

Challenges with CO-augmented Machine Learning (COaML)

Supervised learning: Fenchel-Young Losses (FYL)⁴

Non-optimality of
$$\bar{u}$$
 as a solution of the regularized prediction problem
$$\mathcal{L}_{\Omega}(\theta; \bar{u}) = \underbrace{\max_{u \in \mathcal{C}(s)} \left(\langle \theta | u \rangle - \Omega(u) \right) - \left(\langle \theta | \bar{u} \rangle - \Omega(\bar{u}) \right)}_{\text{Non-optimality of } \bar{u}$$

⁴Blondel, Martins, and Niculae 2020.

Learning coordinated policies

We want to learn policies minimizing the empirical cost

$$\min_{w} \; \mathbb{E}_{\boldsymbol{s} \sim d_{w}} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\boldsymbol{u} \sim \pi_{w}(\cdot | \boldsymbol{s})} \left[c^{2S}(\boldsymbol{s}, \boldsymbol{u}, \xi_{i}) \right] \right]$$

Assuming that we have sampled a dataset $\mathcal{D} = (s_i, \xi_i)_{i \in [N]}$

$$\min_{w} \left[rac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{oldsymbol{u} \sim \pi_{w}(\cdot \mid s_{i})} \Big[c^{2\mathrm{S}}(s_{i}, oldsymbol{u}, \xi_{i}) \Big]
ight]$$

Proposition

We can learn w such that π_w minimizes the empirical risk for two stage problems using an Alternating Minimization (AM) algorithm, see Bouvier et al.⁵

⁵Bouvier et al. 2025.

Coordinating decisions during learning⁶

Surrogate problem with dataset $\mathcal{D} = (s_i, \xi_i)_{i \in [N]}$

$$\min_{\boldsymbol{\mathsf{w}},q_{\otimes}}\mathcal{S}_{N}(\boldsymbol{\mathsf{s}}_{\boldsymbol{\mathsf{w}}};q_{\otimes}) := \min_{\boldsymbol{\mathsf{w}},q_{\otimes}}\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\boldsymbol{\mathsf{u}}\sim q_{i}}\Big[c^{2\mathrm{S}}(\boldsymbol{\mathsf{s}}_{i},\boldsymbol{\mathsf{u}},\xi_{i})\Big] + \kappa\mathcal{L}_{\Omega_{\Delta(\boldsymbol{\mathsf{s}}_{i})}}\Big(U(\boldsymbol{\mathsf{s}}_{i})^{\top}\varphi_{\boldsymbol{\mathsf{w}}}(\boldsymbol{\mathsf{s}}_{i});q_{i}\Big)$$

Alternating minimization update:

$$\begin{aligned} & \boldsymbol{q}_{i}^{(k+1)} = \min_{\boldsymbol{q}_{i}} \mathbb{E}_{\boldsymbol{u} \sim \boldsymbol{q}_{i}} \Big[\boldsymbol{c}^{2\mathrm{S}}(\boldsymbol{s}_{i}, \boldsymbol{u}, \boldsymbol{\xi}_{i}) \Big] + \kappa \mathcal{L}_{\Omega_{\Delta(\boldsymbol{s}_{i})}} \Big(\boldsymbol{U}(\boldsymbol{s}_{i})^{\top} \varphi_{\bar{\boldsymbol{w}}^{(k)}}(\boldsymbol{s}_{i}); \boldsymbol{q}_{i} \Big) & \text{(decomposition)} \\ & \bar{\boldsymbol{w}}^{(k+1)} \in \arg\min_{\boldsymbol{w} \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\Omega_{\mathcal{C}(\boldsymbol{s}_{i}^{(k)})}} \Big(\varphi_{\boldsymbol{w}}(\boldsymbol{s}_{i}^{(k)}); \boldsymbol{U}(\boldsymbol{s}_{i}^{(k)}) \boldsymbol{q}_{i}^{(k+1)} \Big) & \text{(coordination)} \\ & \mathcal{D}^{(k)} \rightarrow \mathcal{D}^{(k+1)} & \text{(dataset update)} \end{aligned}$$

⁶Bouvier et al. 2025.

Tractable updates for well chosen $\Omega_{\Delta(s_i)}$

Decomposition:

$$\begin{aligned} q_i^{(k+1)} &= \mathbb{E}_{\mathbf{Z}} \Big[\Big(\arg \min_{u_{i,0:T}} \sum_{t=0}^{T} c(s_{i,t}, u_{i,t}) - \kappa \left(\varphi_{\bar{w}^{(k)}}(s_i) + \epsilon \mathbf{Z} \right)^{\top} u_{i,0} \Big)_0 \Big] \\ \text{s.t.} \quad s_{i,0} &= s_i^{(k)}, \\ u_{i,t} &\in \mathcal{U}(s_{i,t}) \quad \forall t \in [0:T], \\ s_{i,t+1} &= F(s_{i,t}, u_{i,t}, \xi_{i,t+1}^{(k)}) \quad \forall t \in [0:T-1]. \end{aligned}$$

Coordination:

$$\bar{\boldsymbol{w}}^{(k+1)} \in \arg\min_{\boldsymbol{w} \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\Omega_{\mathcal{C}(\boldsymbol{s}_{i}^{(k)})}} \left(\varphi_{\boldsymbol{w}}(\boldsymbol{s}_{i}^{(k)}); U(\boldsymbol{s}_{i}^{(k)}) \boldsymbol{q}_{i}^{(k+1)} \right)$$

Dataset update: $\mathcal{D}^{(k)} o \mathcal{D}^{(k+1)}$

Current stage coordination - MRMP

The learned policy outperforms the policy imitating anticipative decisions

Problem

▶ Imitating anticipative decisions can fail on problems where strong coordination is needed, typically on maintenance and pricing problems.

Takeaways

- We coordinate decisions during learning.
- Encouraging results on a simple problem, benchmark on large size problems coming soon.

Questions

- ▶ What are the best rules for updating the dataset ?
- Could we coordinate T decisions at the same learning step?