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Dynamic Vehicle Routing Problem with Time Windows1

st+1 = F (st , ut)t = 1 t = 2 t = 3

State
st ∈ S
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Decision
ut ∈ U(ut)
set of routes

s1

u1
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Dynamic VRPTW

A solution of this problem is a policy:

π : X → Y
st︸︷︷︸

set of customers

7→ ut︸︷︷︸
set of routes

Objective: find π⋆, serving all customers before end of horizon, and minimizing total
cost

π⋆ = argmin
π

E

 ∑
epochs t

total cost of routes in decision ut = π(st)


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Combinatorial Markov Decision Processes

Setting:

▶ High-dimensional set of states S
▶ Finite but combinatorial set of decisions U(s) ⊂ Rd(s)

▶ Exogeneous independent random variables ξ

▶ Dynamics s ′ = F (s, u, ξ) and initial probability distribution on S
▶ Cost function c(s, u)

Goal: find a policy π∗ (possibly random) minimizing the total cost

π∗ ∈ argmin
π
Eξ,ut∼π(·|st)

[∑
t

c(st ,ut))

]
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Full information on history

For a given T we have N samples

ξi = (ξi ,1, . . . , ξi ,T )

The following problem is hard to solve for combinatorial MDPs

min
(ui,t)i,t

1

N

N∑
i=1

T∑
t=0

c(si ,t , ui ,t)

s. a. ui ,t ∈ U(si ,t)
si ,t+1 = F (si ,t , ui ,t , ξi ,t+1) Dynamics

si ,0 = s

ui ,t = ui ′,t ∀i , i ′ such as ξi ,1 = ξi ′,1, . . . , ξi ,t = ξi ′,t Nonanticipativity constaints
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Classical assumptions in stochastic programming

We have an efficient algorithm to solve the determistic single scenario problem

min
u[T ]

T∑
t=0

c(st , ut)− θt⊤ut

s. a. ut ∈ U(st)
st+1 = F (st , ut , ξt+1)

s0 = s

where θt are dual vectors.
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Policy that won the EURO-NeurIPS challenge2

�



�
	Neural Network

φw

Prize Collecting
HGS f

State
st

Decision
ut

2Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn:
0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

7/21

https://doi.org/10.1287/trsc.2023.0107


Policy that won the EURO-NeurIPS challenge2
Epoch decisions can be seen as the solution of a Prize
Collecting VRPTW:

▶ Serving customers is optional

▶ Serving customer n gives prize θn

▶ Objective: maximize total profit minus routes costs

max
u∈U(st)

∑
(n,m)∈s2t

θnun,m︸ ︷︷ ︸
total profit

−
∑

(n,m)∈s2t

cn,mun,m︸ ︷︷ ︸
total routes cost

.

▶ Algorithm: Prize Collecting Hybrid Genetic Search�
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Policy that won the EURO-NeurIPS challenge2

Difficulty: no natural way of computing meaningful prizes

�
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Policy that won the EURO-NeurIPS challenge2

Solution: use a neural network to predict request prizes θ = φw (st)

�



�
	Neural Network
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Prize Collecting
HGS f

State
st
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➥ Policy πw
2Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
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State of the art: imitate anticipative decisions Baty et al. 2024

We rebuild the anticipative decisions a posteriori

i 1 2 3

x i

i

➥ use COaML (Combinatorial Optimization augmented ML)
➥ train by imitating anticipative trajectories
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Multi-components Ressource constrained Maintenance Problem (MRMP)

▶ n components

▶ maintain at most r at each
stage

State
st = s1, . . . , sn ∈ S1 × · · · × Sn

Decision ut = u1, . . . , un ∈ [0, 1]n∑n
i=1 ui ≤ r

CO layer: maintaining component n gives prize θn�



�
	Neural Network

φw
max∑N

i=1 ui≤1

∑N
i=1 θi⊤ui

State
st

Maintenance prizes

θi

Decision
ui
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Anticipative solutions can be bad - we need coordination!
Imitate expert anticipative trajectories

Bad performance on the MRMP
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The states in our training set D are poor

We should solve
min
w
Es∼δw

[
L
(
φw (s), δ

∗(s)
]

while we solve
min
w
Es∼δ∗

[
L
(
φw (s), δ

∗(s)
]

Building D is a classical problem in Reinforcement Learning. One solution is to update
the dataset for expert demonstration, for example using DAgger3 (α ∈ [0, 1])

αδ∗ + (1− α)δw

3Ross, Gordon, and Bagnell 2010.
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Anticipative solutions can be bad - we need coordination!
Imitate anticipative decisions
+ the learner updates the dataset for expert demonstration

The gap with the optimal solution is still huge.
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Coordinating decisions at the current time step

For a given T we have N samples

ξi = (ξi ,1, . . . , ξi ,T )

min
(ui,t)i,t

1

N

N∑
i=1

T∑
t=0

c(si ,t , ui ,t)

s. a. ui ,t ∈ U(si ,t)
si ,t+1 = F (si ,t , ui ,t , ξi ,t+1) Dynamics

si ,0 = s

ui ,t = ui ′,t ∀i , i ′ such as ξi ,1 = ξi ′,1, . . . , ξi ,t = ξi ′,t Nonanticipativity constaints
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ξi = (ξi ,1, . . . , ξi ,T )

min
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1

N

N∑
i=1

T∑
t=0

c(si ,t , ui ,t)

s. a. ui ,t ∈ U(si ,t)
si ,t+1 = F (si ,t , ui ,t , ξi ,t+1) Dynamics

si ,0 = s

ui ,1 = ui ′,1 ∀i , i ′ First stage nonanticipativity constaints

We try to learn the solutions of the two-stage approximation of the sampled problem
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Corresponding empirical cost minimization problem
Cost in the two-stage approximation:

c2S(s, u, ξ) = c(s, u) + Q(s, u, ξ)

Recourse cost: Q(s, u, ξ) = min
u[1:T ]

T∑
t=1

c(st , ut)

s.t. s1 = F (s, u, ξ1)

st+1 = F (st , ut , ξt+1) ∀t ∈ [1 : T − 1]

ut ∈ U(st) ∀t ∈ [1 : T ]

The first stage solutions of the previous problem are solutions to

min
u∈U(s)

1

N

N∑
i=1

c2S(s, u, ξi )
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Learning coordinated policies

We want to learn policies minimizing the empirical cost

min
w

Es∼dw

[
1

N

N∑
i=1

Eu∼πw (·|s)
[
c2S(s,u, ξi )

]]

Assuming that we have sampled a dataset D = (si , ξi )i∈[N]

min
w

[
1

N

N∑
i=1

Eu∼πw (·|si )

[
c2S(si ,u, ξi )

]]
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Challenges with CO-augmented Machine Learning (COaML)

Policies πw based on

CO oracle f
maxu∈U(s) θ

Tu

θ =

∈Rd(s)︷ ︸︸ ︷
φw (s)

Cost vector

u ∈ U(s)
Solution

u5 u6

u1

u2u3

u4
θ

u1

u2u3

u4

u5
u6

θ

Supervised learning: Fenchel-Young Losses (FYL)4

LΩ(θ; ū) =

Non-optimality of ū
as a solution of the

regularized prediction problem︷ ︸︸ ︷
max
u∈C(s)

(
⟨θ|u⟩ − Ω(u)

)
−
(
⟨θ|ū⟩ − Ω(ū)

)
= Ω∗(θ) + Ω(ū)− ⟨θ|ū⟩

4Blondel, Martins, and Niculae 2020.
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Learning coordinated policies

We want to learn policies minimizing the empirical cost

min
w

Es∼dw

[
1

N

N∑
i=1

Eu∼πw (·|s)
[
c2S(s,u, ξi )

]]

Assuming that we have sampled a dataset D = (si , ξi )i∈[N]

min
w

[
1

N

N∑
i=1

Eu∼πw (·|si )

[
c2S(si ,u, ξi )

]]

We can learn w such that πw minimizes the empirical risk for two stage problems
using an Alternating Minimization (AM) algorithm, see Bouvier et al.5

Proposition

5Bouvier et al. 2025.
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Coordinating decisions during learning6

Surrogate problem with dataset D = (si , ξi )i∈[N]

min
w ,q⊗

SN(sw ; q⊗) := min
w ,q⊗

1

N

N∑
i=1

Eu∼qi

[
c2S(si ,u, ξi )

]
+ κLΩ∆(si )

(
U(si )

⊤φw (si ); qi

)
Alternating minimization update:

q
(k+1)
i = min

qi
Eu∼qi

[
c2S(si ,u, ξi )

]
+ κLΩ∆(si )

(
U(si )

⊤φw̄ (k)(si ); qi

)
(decomposition)

w̄ (k+1) ∈ arg min
w∈W

1

N

N∑
i=1

LΩ
C(s(k)

i
)

(
φw (s

(k)
i );U(s

(k)
i )q

(k+1)
i

)
(coordination)

D(k) → D(k+1) (dataset update)

6Bouvier et al. 2025.
18/21



Tractable updates for well chosen Ω∆(si )

Decomposition:

q
(k+1)
i = EZ

[(
arg min

ui,0:T

T∑
t=0

c(si,t , ui,t)− κ (φw̄ (k)(si ) + ϵZ)⊤ ui,0
)
0

]
s.t. si,0 = s

(k)
i ,

ui,t ∈ U(si,t) ∀t ∈ [0 : T ],

si,t+1 = F (si,t , ui,t , ξ
(k)
i,t+1) ∀t ∈ [0 : T − 1].

Coordination:

w̄ (k+1) ∈ arg min
w∈W

1

N

N∑
i=1

LΩ
C(s

(k)
i

)

(
φw (s

(k)
i );U(s

(k)
i )q

(k+1)
i

)

Dataset update: D(k) → D(k+1)
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Current stage coordination - MRMP

Coordinated decisions

The learned policy outperforms the policy imitating anticipative decisions

20/21



Problem

▶ Imitating anticipative decisions can fail on problems where strong coordination is
needed, typically on maintenance and pricing problems.

Takeaways

▶ We coordinate decisions during learning.

▶ Encouraging results on a simple problem, benchmark on large size problems
coming soon.

Questions

▶ What are the best rules for updating the dataset ?

▶ Could we coordinate T decisions at the same learning step?
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