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Dynamic Vehicle Routing Problem with Time Windows'
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Dynamic VRPTW

A solution of this problem is a policy:

T: X = Y
St —> Ue

set of customers set of routes

Objective: find 7*, serving all customers before end of horizon, and minimizing total
cost

7 =argminE Z total cost of routes in decision u; = 7(s;)
™

epochs t

3/21



Combinatorial Markov Decision Processes

Setting:
» High-dimensional set of states S
> Finite but combinatorial set of decisions /(s) ¢ R4(*)
» Exogeneous independent random variables &
» Dynamics s’ = F(s, u, &) and initial probability distribution on S
» Cost function c(s, u)

Goal: find a policy 7* (possibly random) minimizing the total cost

t

7 € arg mﬁin B¢ ue~r(-|s) [Z c(st, ur))]
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Full information on history

. O C
For a given T we have N samples o ©
O O O C
[} @] © [}
§i= (&1 60T) o m
O o O
The following problem is hard to solve for combinatorial MDPs
N T
o1
min N E E c(sie, i)
(uiedie N 527 420
s.a. ujr €U(sit)
Sit+1 = F(Sit, Ui e &ier1) Dynamics
S,‘yo =S
Ui = upye Vi, i’ such as §i1=2%&r1,.--,& =&+ Nonanticipativity constaints
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Classical assumptions in stochastic programming

We have an efficient algorithm to solve the determistic single scenario problem

min Z c(se,ur) — 0: Tuy

um
s.a. U GU(st)

St+1 = F(st7 Ut7§t+1)
So =S

where 6; are dual vectors.
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Policy that won the EURO-NeurlPS challenge?
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?Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. 1SSN:

0041-1655. poL: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurlPS challenge?

Epoch decisions can be seen as the solution of a Prize
Collecting VRPTW:

» Serving customers is optional
» Serving customer n gives prize 6,

» Objective: maximize total profit minus routes costs

O
gg/{a(x) Z 0n Unm — Z Cn,mUn,m -
ueU(s,
' ,m)€s? (n,m)es?
total profit total routes cost
» Algorithm: Prize Collecting Hybrid Genetic Search 0

2| éo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. 1SSN:
0041-1655. pDOI: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurlPS challenge?

Difficulty: no natural way of computing meaningful prizes
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Policy that won the EURO-NeurlPS challenge?

Solution: use a neural network to predict request prizes 8 = ¢ (st)

O 2
O 5 N ©
10 O 7
O O O o
E O 50
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O O @)

State Neural Network)| Customers prizes | prize Collecting Decision
St Pw 0n, Vn € st HGS f ut

w Policy 7,
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State of the art: imitate anticipative decisions Baty et al. 2024

We rebuild the anticipative decisions a posteriori

] 1 2 3
9 o
o © o ?
o @] @]
= o ]
j o
X o o o o

e N

w use COaML (Combinatorial Optimization augmented ML)
w train by imitating anticipative trajectories
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Multi-components Ressource

maintenance cost
<

€€
failure cost

maintenance cost

€

constrained Maintenance Problem (MRMP)

» n components

» maintain at most r at each

stage
State
St =S1,...,5p €S1 X - XSy
Decision u; = u1,...,u, € [0,1]"

27:1 up<r

CO layer: maintaining component n gives prize 6,

State
_

St

Neural Network | Maintenance prizes
e
Pw 0;

Decision
_

N
max - 0 Tu;
2,{\’:1 ui<1 Z’*l ! ! u;
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Anticipative solutions can be bad - we need coordination!

Imitate expert anticipative trajectories

3000 f

2000

1000

Average gap with optimal policy

1 3 5 7 9 11 13 15 17 19
Training iteration k

Bad performance on the MRMP
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The states in our training set D are poor

We should solve
mmin Eses, [ﬁ (90w(5)7 5*(5)}

while we solve

mvin Ess- [ﬁ (QOW(S), 5*(5)}

Building D is a classical problem in Reinforcement Learning. One solution is to update
the dataset for expert demonstration, for example using DAgger® (a € [0, 1])

ad® 4+ (1 — a)ow

3Ross, Gordon, and Bagnell 2010.
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Anticipative solutions can be bad - we need coordination!

Imitate anticipative decisions
+ the learner updates the dataset for expert demonstration

T T T T T T T T T T

‘_.._.. anticipative + dataset update

-- anticipative

3000 | i}

2000

...........

1000

Average gap with optimal policy

1 3 5 7 9 11 13 15 17 19
Training iteration k

The gap with the optimal solution is still huge.
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Coordinating decisions at the current time step
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Coordinating decisions at the current time step

. O 6]
For a given T we have N samples 5 o
e} e} @) (¢]
] O © ]
&= (&, 61) o =
O o O

LN T
min —ZZc(si7t,u;,t)

(e N = =5
s.a. ujr €U(sit)
sit+1 = F(Sit, Uit &ir41) Dynamics
S,'70 =S

uipn=upg Vi, i First stage nonanticipativity constaints

We try to learn the solutions of the two-stage approximation of the sampled problem
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Corresponding empirical cost minimization problem

Cost in the two-stage approximation:
(s, u,€) = c(s, U) + Q(s,u,§)
Recourse cost:  Q(s, u,&) = min Z c(st, ut)
U T]
st. s = F(s, u,{l)

St4+1 = F(St, Ut:ft—&-l) Vt e [1 T — ].]
ur €U(s) Yte[l:T]

The first stage solutions of the previous problem are solutions to

N
1 28
ug;;?s),v;lc (s,u,&)

14/21



Learning coordinated policies

We want to learn policies minimizing the empirical cost

N

1
N > Euery1s) (s, 0, 5/)]]

i=1

min E¢.
w” s~dy

Assuming that we have sampled a dataset D = (s;, ;) icn

m'n! ZEUNWW( |si) [ (517 afl)}]
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Challenges with CO-augmented Machine Learning (COaML)

.. u u
Policies 7, based on 3 2 “ ] w
R4 uy
— ug 9
0= ou(s) CO oracle f u€Us) o
Cost vector maxyey(s) 07 u Solution u
6
us

Supervised learning: Fenchel-Young Losses (FYL)*

Non-optimality of &
as a solution of the
regularized prediction problem

£a(0:8) = max ((0]u) ~ Q(u)) — ((#18) — A(3)) = 2'(6) + &) ~ (413

“Blondel, Martins, and Niculae 2020.
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Learning coordinated policies

We want to learn policies minimizing the empirical cost

min E¢.
w s~dy

1 N
N Z ]Eu~7rw(~|$) [C2S(S7 u, él)]]

i=1
Assuming that we have sampled a dataset D = (s;, ;) icn

1 N
R S E )|

i=1

min
w

Proposition

We can learn w such that 7, minimizes the empirical risk for two stage problems
using an Alternating Minimization (AM) algorithm, see Bouvier et al.®

5Bouvier et al. 2025.
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Coordinating decisions during learning®

Surrogate problem with dataset D = (s;,§i)ic[n

w,qg

N
min Sy (s ) = min NZ Buvg |¢5(si,1,6)| + wLay,, (Uls) ouls): a)
Alternating minimization update:

q,(kH) =minEyq |c [ QS(s,-, u,&;)} + ”fﬁQA(s,-) (U(s,-)T@W(k)(s,-); q;) (decomposition)

ai
_(k+1) 1 (Y. 11 (R0 (kD) L
w €arg vgél{)v ZEQ o9) (tpw(s, ) U(s;)g; ) (coordination)
D) — plkth) (dataset update)

5Bouvier et al. 2025
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Tractable updates for well chosen Q)

Decomposition:

-
Q§k+1) K arg min Z c(sies uie) — K (Qaw (si) + GZ)T “i,0>0}
t=0

ujo:T

st. sio= s(k),

Ui €U(sie) Ytel0:T],
Sit+1 = F(sl',ta ui,t7£,(7l?+1) Vt € [0 T — ]_]

Coordination:

w1 ¢ arg m|n — Z Q o) (<Pw( (k))' (S’-(k))ql-(k+1)>

Dataset update: D) — D(k+1)
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Current stage coordination - MRMP

€€
failure cost

maintenance cost
€

maintenance cost

1

Coordinated decisions

Average gap with optimal policy
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T
anticipative + dataset update
------ anticipative

L L L n —

1 3 5 7 9 11 13 15 17 19

Training iteration k

The learned policy outperforms the policy imitating anticipative decisions
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Problem

» Imitating anticipative decisions can fail on problems where strong coordination is
needed, typically on maintenance and pricing problems.

Takeaways
> We coordinate decisions during learning.

» Encouraging results on a simple problem, benchmark on large size problems
coming soon.

Questions
> What are the best rules for updating the dataset ?

» Could we coordinate T decisions at the same learning step?
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