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Context

Offshore wind is growing.

Source: RTE - 2024

France wants to promote offshore wind farms.
→ Attractive conditions for producers.

From the TSO perspective:

▶ Penalties proportional to curtailed energy.

▶ Contractual quota of free maintenance days.

Source: RTE

1 / 17



Context
Increasing of offshore

wind farms.

Estimating maintenance cost to make

informed strategic choices.

Estimating cost is challenging.

1 / 17



Context
Increasing of offshore

wind farms.

Estimating maintenance cost to make

informed strategic choices.

Estimating cost is challenging.

Estimating maintenance cost to make informed strategic

choices.

Source: TenneT

The TSO has to choose between different substation designs.
→ Maintenance cost must be taken into account.
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Context
Increasing of offshore

wind farms.

Estimating maintenance cost to make

informed strategic choices.

Estimating cost is challenging.

Estimating cost is challenging.

Source: RTE - PSEM Calvados

▶ Substations are 50/100 miles offshore.

▶ Workers may or may not sleep at location.

▶ 2 hours of effective work per day vs. 7 hours on land.
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Context
Increasing of offshore

wind farms.

Estimating maintenance cost to make

informed strategic choices.

Estimating cost is challenging.

Estimating cost is challenging.

Source: Copernicus

Daily average wave height
(Baie de Saint-Brieuc - 2023)

If waves are too high, access to the substation is impossible.
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Context
Increasing of offshore

wind farms.

Estimating maintenance cost to make

informed strategic choices.

Estimating cost is challenging.

Estimating cost is challenging.

Source: RTE

Daily average offshore wind farm production
(Baie de Saint-Brieuc - 2023)

Penalties are proportional to curtailed energy.
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We want to estimate the penalties incurred by strategic choices
under uncertainty.

Assumption 1: A single substation is considered, with no interaction with others
substations.
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We want to estimate the penalties incurred by strategic choices
under uncertainty.

Assumption 2: Penalties are proportional to curtailed energy outside free maintenance
days.
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We want to estimate the penalties incurred by strategic choices
under uncertainty.

Assumption 3: All maintenance operations require the substation to be shut down.
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Assumption 4: Substation maintenance is a Markov Decision Process (MDP) that
depends on strategic choices.

MDP with
→ state s ∈ S describing the substation;
→ control = maintenance decisions u ∈ {0; 1}C where C is a set of components;
→ transition matrices Pu ∈ RS×S where Pu

s,s′ = P(s
′|s, u), s ′ is next state;

→ transition cost = penalty.
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A substation is a set of components.

Each component is associated
with a degradation model.

→ Discrete-time Markov chain.
→ Time step = 1 day.

Parameters estimation using
standard libraries, leveraging:

→ Manufacturer data:
Mean Time Between Failure
(MTBF);

→ Expert knowledge:
Aging; standard reliability laws;
number of states.
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A substation is a set of components.

Each component is associated
with a degradation model.

→ Discrete-time Markov chain.
→ Time step = 1 day.

The evacuation capacity depends on component
degradation.
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A substation is a set of components.

Each component is associated
with a degradation model.

→ Discrete-time Markov chain.
→ Time step = 1 day.

The evacuation capacity depends on component
degradation and maintenance.

C (

=st︷ ︸︸ ︷
(xct )c∈C

degradation of c

, (dc
t )c∈C)

ongoing
maintenance
days on c

)
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Assumption 5: Weather dependent electricity production and substation accessibility.

weather scenario w ∈ W = (pwt

production

∈ R+

, hwt

accessibility

∈ {0; 1}

)t∈[0:H]

time step = 1 day, horizon H
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Assumption 5: Weather dependent electricity production and substation accessibility.

weather scenario w ∈ W = (pwt

production

∈ R+

, hwt

accessibility

∈ {0; 1}

)t∈[0:H] hwt = 0 hwt = 1

accessibility
threshold

accessibility
threshold

production =
f(wind speed)

historical
climate data time series

analysis

wave height

wind speed

accessibility

production

weather scenario w

hw
t

pw
t

time step = 1 day, horizon H

→ Penalties = 1{t /∈T free} (p
w
t − C (swt ))+ where T free = free maintenance days
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Assumption 6: Maintenance must be scheduled in advance, at the start of each
two-month period, to use quotas and mobilize the necessary resources.

We introduce strategic stages and strategic periods of two months to model maintenance decisions and operational
time steps of one day to model degradation and weather.
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Assumption 6: Maintenance must be scheduled in advance, at the start of each
two-month period, to use quotas and mobilize the necessary resources.

We introduce strategic stages and strategic periods of two months to model maintenance decisions and operational
time steps of one day to model degradation and weather.

mt,c = 1 if we want to start
maintenance at t on component c.
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Assumption 6: Maintenance must be scheduled in advance, at the start of each
two-month period, to use quotas and mobilize the necessary resources.

We introduce strategic stages and strategic periods of two months to model maintenance decisions and operational
time steps of one day to model degradation and weather.

▶ m = (mt,c )t,c ∈ {0, 1}60×C maintenance schedule;

▶ T free ⊂ [1 : 60] set of free maintenance days;

▶ Q number of free maintenance days available for the lease term for all components (coupling variable).



Assumption 7: Any maintenance operations scheduled at the beginning
of the strategic period must be carried out.

7 / 17

Strategic decisions are taken without any knowledge of accessibility.

Strategic maintenance decisions

We introduce a recourse variable.

▶ uw = (uwt )t ∈ {0, 1}C×60 operational maintenance in weather scenario w .
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Assumption 7: Any maintenance operations scheduled at the beginning
of the strategic period must be carried out.
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Strategic decisions are taken without any knowledge of accessibility.

Operational maintenance

We introduce a recourse variable.

▶ uw = (uwt )t ∈ {0, 1}C×60 operational maintenance in weather scenario w .

The recourse variables follow the following deterministic rule:
ϕ: ”Maintain at the earliest opportunity from the desired start date.”

uw

operational
maintenance

= ϕ(m

strategic
decision

, hw

accessibility

)



Cost over a strategic period
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m, ut

T T + 1t €

€€

€€€

w1, w2, w33 weather scenarios:T free

Operational maintenance depends on the
weather, so do the penalties over the
strategic period.

→ Minimize the average penalties
over all weather scenarios.

Expectation under the MDP dynamics︷ ︸︸ ︷
Es

[
1

|W|
∑
w∈W

[
60∑
t=1

1{t /∈T free}(p
w
t − C(swt ))+

]]
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Full MDP
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Let us assume that we know how to model the weather as a Markov Chain.

▶ Horizon: 180× 60;

▶ State:
▶ s ∈ S current substation state;
▶ q ∈ [0 : Q] free maintenance days still available;
▶ p ∈ R+ production;
▶ h ∈ {0, 1} wave height;
▶ m ∈ {0, 1}C×60 last chosen maintenance schedule;
▶ T free ⊂ [1 : 60] last chosen free maintenance days.

▶ Control: If t is not a strategic stage:

▶ ø

If t is a strategic stage:

▶ m ∈ {0, 1}C×60 maintenance schedule;

▶ T free ⊂ [1 : 60] free maintenance days.

▶ Transition cost at time t: 1{t∈T free} (pt − C(st))
+;

▶ Transitions: degradations, ongoing maintenance and weather.



Aggregated MDP
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Decisions are taken at strategic stages. We can write an equivalent MDP at strategic time stages.

▶ Horizon: 180;

▶ State:
▶ s ∈ S substation state at the beginning of the strategic period;
▶ q ∈ [0 : Q] free maintenance days still available;
▶ p ∈ R+ production at the beginning of the strategic period;
▶ h ∈ {0, 1} wave height at the beginning of the strategic period.
•
•

▶ Control:
▶ m ∈ {0, 1}C×60 maintenance schedule;
▶ T free ⊂ [1 : 60] free maintenance days.

▶ Transition cost at time t: Es,w

[∑60
t=11{t∈T free} (pt − C(st))

+
]
;

▶ Transitions: degradations, ongoing maintenance and weather.
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▶ Horizon: 180;

▶ State:
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▶ Horizon: 180;

▶ State:
▶ s ∈ S substation state at the beginning of the strategic period;
▶ q ∈ [0 : Q] free maintenance days still available.

▶ Control:
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Computing value functions for the Approximate Aggregated MDP

VT (s, q) = min
m,T free

Es

 1

|WT |
∑

w∈WT

[
60∑
t=1

1{t /∈T free} (p
w
t − C(swt ))+ + VT+1

(
sw61, q

out
)]

s.t. uw = ϕ(m, hw ) ∀w ∈ WT

sw0 = s ∀w ∈ WT

T free ⊂ [1 : 60]

qout = q − |T free|

qout ≥ 0
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Operational maintenance follows the deterministic rule.
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Unique initial state at the beginning of the strategic period.
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Free maintenance days are scheduled at the beginning of the strategic period. The number of days is limited by the
quota



Computing value functions for the Approximate Aggregated MDP

VT (s, q) = min
m,T free

1

|WT |
∑

w∈WT

 60∑
t=1

∑
s′∈S

µw
t (s

′)1{t /∈T free}
(
pwt − C(s′)

)++
∑
s′∈S

µw
61(s

′)VT+1

(
s′, qout

)

s.t. µw
t+1 = µw

t P
uwt ∀t ∈ [1 : 60]

uw = ϕ(m, hw ) ∀w ∈ WT
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qout = q − |T free|
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We introduce the probabilities associated with the states µw
t = (P(swt = s′))s′∈S that are calculated using the

Chapman-Kolmogorov equation.
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13 / 17

The only information provided by suppliers is
MTBF. But the reliability of a component is
better characterized by its reliability function.

Several reliability functions correspond to the same MTBF.
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Building the Ambiguity set
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For each admissible reliabily function, we estimate the parameters of the Markov Chain.

The ambiguity set A is the collection of MDP parameters:

A = {θ1, θ2, θ3}



Same MTBF with different MDPs can lead to different controls and cost
estimates

2 states

(no aging)

4 states

(aging)

MTBF states

(deterministic aging)

Optimal strategy

Corrective maintenance

Preventive maintenance
(in state 3)

Preventive maintenance
(in state MTBF-1)

Cost (normalized)

2494

1

0

MDP

We model the substation as as single component with a MTBF of 15 years. We evaluate the cost over a concession period of 30 years with perfect
accessibility.
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Incorporating ambiguity in the model
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Two distinct models can lead to significantly different cost estimates despite having
the same MTBF. It could result in suboptimal maintenance policies and misestimated
costs.
→ Ambiguity must be incorporated in the model.
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Two distinct models can lead to significantly different cost estimates despite having
the same MTBF. It could result in suboptimal maintenance policies and misestimated
costs.
→ Ambiguity must be incorporated in the model.

We write a Distributionally Robust Optimization problem.

VT (s, q) = min
m,T free

max
θ∈A

1

|WT |
∑

w∈WT

 60∑
t=1

∑
s′∈S

µw
t (s

′)1{t /∈T free}
(
pwt − C(s′)

)++
∑
s′∈S

µw
61(s

′)VT+1

(
s′, qout

)

s.t. µw
t+1 = Puwt (θ)µw

t ∀t ∈ [1 : 60]

. . .
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Takeaways

Problem is modelled

▶ as a Markov Decision Process;

▶ in a Multihorizon setting.

We need this model

▶ to estimate the cost of strategic choices;

▶ to get insights on what contracts entail for the TSO.

Optimizing maintenance for a false MDP leads to poor cost estimates.
Future works entails Distributionally Robust Optimization.
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